
LLNL-JRNL-401374

Conversion of Parameters Among
Variants of Scatchard's
Neutral-Electrolyte Model for Electrolyte
Mixtures that Have Different Numbers of
Mixing Terms

J. A. Rard, A. M. Wijesinghe

February 14, 2008

Journal of Solution Chemistry



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



1 

 Conversion of Parameters Among Variants of Scatchard’s Neutral-
Electrolyte Model for Electrolyte Mixtures that Have Different 
Numbers of Mixing Terms  
 

Joseph A. Rard · Ananda M. Wijesinghe 
 

Abstract Various model equations are available for representing the excess Gibbs energy 

properties (osmotic and activity coefficients) of aqueous and other liquid mixed-
electrolyte solutions. Scatchard’s neutral-electrolyte model is among the simplest of these 

equations for ternary systems and contains terms that represent both symmetrical and 
asymmetric deviations from ideal mixing behavior when two single-electrolyte solutions 

are mixed in different proportions at constant ionic strengths. The usual form of this 

model allows from zero to six mixing parameters. In this report we present an analytical 
method for transforming the mixing parameters of neutral-electrolyte-type models with 

larger numbers of mixing parameters directly to those of models with fewer mixing 
parameters, without recourse to the source data used for evaluation of the original model 

parameters. The equations for this parameter conversion are based on an extension to 

ternary systems of the methodology of Rard and Wijesinghe [J. Chem. Thermodyn. 35, 
439–473 (2003)] and Wijesinghe and Rard [J. Chem. Thermodyn. 37, 1196–1218 (2005)] 

that was applied by them to binary systems. It was found that the use of this approach 
with a constant ionic-strength cutoff of I ≤ 6.2 mol·kg–1 (the NaCl solubility limit) yielded 

parameters for the NaCl + SrCl2 + H2O and NaCl + MgCl2 + H2O systems that predicted 

osmotic coefficients φ in excellent agreement with those calculated using the same sets of 

parameters whose values were evaluated directly from the source data by least-squares, 
with root mean square differences of RMSE(φ) = 0.00006 to 0.00062 for the first system 

and RMSE(φ) = 0.00014 to 0.00042 for the second. If, however, the directly evaluated 

parameters were based on experimental data where the ionic strength cutoff varied with 

the ionic-strength fraction, i.e. because they were constrained by isopiestic ionic strengths 

(MgCl2 + MgSO4 + H2O) or solubility / oversaturation ionic strengths (NaCl + SrCl2 + 
H2O and NaCl + MgCl2 + H2O), then parameters converted by this approach assuming a 
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constant ionic-strength cutoff yield RMSE(φ) differences about an order of magnitude 

larger than the previous case. This indicates that for an accurate conversion of model 

parameters when the source model is constrained with variable ionic strength cutoffs, an 
extension of the parameter conversion method described herein will be required. 

However, when the source model parameters are evaluated at a constant ionic strength 
cuttoff, such as when source isopiestic data are constrained to ionic strengths at or below 

the solubility limit of the less soluble component, or are Emf measurements that are 

commonly made at constant ionic strengths, then our method yields accurate converted 
models. 
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solutions · Scatchard’s neutral-electrolyte model  
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Chemistry, Materials, Earth and Life Sciences Directorate, Lawrence Livermore National 
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1 Introduction 
 
Natural waters are aqueous mixtures of electrolytes that in some cases are very 

concentrated (brines), whereas biofluids such as intra- and intercellular liquids contain 
mixtures of electrolytes in addition to their organic and biological components. Aqueous 

solutions are also used as a medium for purification of electrolytes by recrystallization, 

ion exchange, liquid-liquid extraction, etc., and for applications such as growing of high-
quality crystals needed for single crystal X-ray structural determinations. 

 The large number of possible aqueous electrolyte mixtures, and the widespread 
interest in their thermodynamic properties, has generated much interest in representing, 

correlating, and estimating their thermodynamic properties. One of the earliest equations 

for representing the variation of activity coefficients with solution composition, which 
since then has been commonly referred to as “Harned’s rule”, was presented by Harned 

and Owen [1]. They observed that the logarithm of the activity coefficient of one solute 
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in an aqueous common-ion two-electrolyte mixture at lower concentrations was a linear 

function of the molality (or molality-based ionic strength I) of the other solute when the 
total molality (or ionic strength) was kept constant. When the measurements extend to 

moderate ionic strengths or when complex formation occurs, an additional quadratic term 
in the molalities (or ionic strength) is generally needed to reliably represent the data. 

Robinson and Stokes [2] have also discussed this approach and summarized some of the 

systems modeled with this equation. However, because this approach is limited to four 
parameters (two mixing parameters with the other two parameters being the trace activity 

coefficients of each solute in a solution of the other component) for the original form of 
Harned’s rule, it is generally not able to represent activity data to their full experimental 

precision at high ionic strengths. Furthermore, each set of Harned coefficients pertains to 

a single constant ionic strength or constant total molality, and an additional set is needed 
each time the total concentration is changed. 

 Scatchard’s neutral-electrolyte model [3] allows up to five mixing parameters in 

terms that describe mixing effects that are both symmetric and asymmetric in the ionic-
strength fractions of the two electrolytes. This model is capable of accurately 

representing osmotic and activity coefficients of mixtures with, or without, a common ion 
to high ionic strengths. Rush [4] has reported mixing parameters for this model for many 

aqueous electrolyte mixtures at 298.15 K. 

 Friedman’s [5] use of the cluster-expansion method produced an expression for 
the Gibbs energy of mixing per kilogram of the solvent for common-ion mixtures that 

contains an arbitrary number of terms of the form RTI2y(1 – y)gn(2y – 1)n, where y is the 
ionic-strength fraction of one of the electrolytes, R is the universal gas constant, T is the 

absolute temperature, and n is a positive integer that ranges from zero to infinity. Wigent 

and Leifer [6] and Leifer and Wigent [7] give equations relating Friedman’s gn mixing 
coefficients to those of Scatchard’s neutral-electrolyte model and generalized the mixing 

terms of the neutral-electrolyte model to include higher-order interactions [7]. Blandamer 
et al. [8] have summarized some additional mixing equations with an emphasis on mixing 

relations for water activities. 

 Pitzer’s ion-interaction model has been used extensively in the thermodynamic 
modeling of aqueous electrolyte mixtures and this model has been incorporated into 
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several geochemical modeling codes. Pitzer’s book chapter [9] describes this model in 

detail, provides numerous references, and gives extensive tables of model parameters. For 
common-ion ternary electrolyte solutions this model allows two mixing parameters. 

Clegg and Whitfield [10] have summarized numerous studies in the literature in which 
Pitzer’s model has been used to represent the thermodynamic activities of concentrated 

electrolyte mixtures and also describe alternative thermodynamic models based on the 

assumed presence of ion pairing. 
Although Scatchard chose a particular extended Debye-Hückel model function to 

represent the osmotic and activity coefficients of the single electrolytes when he 
formulated the neutral-electrolyte model [3] (see below, Eq. 2)) there is nothing inherent 

in his model that limits it to that choice of functional form for the binary solutions. In 

several studies [11, 12], Pitzer’s ion-interaction equations for the single electrolyte 
solutions have been combined with mixing terms from Scatchard’s neutral-electrolyte 

model to yield very accurate representations of their isopiestic data for common-ion 

aqueous electrolyte mixtures. This hybrid model gave significantly more accurate fits 
than the corresponding ones with Pitzer’s two-parameter mixing function. 

Because the neutral-electrolyte model uses a very flexible combination of mixing 
terms with five [3] or more [7] mixing parameters, it is capable of accurately representing 

thermodynamic activity data for ternary solutions to very high ionic strengths. However, 

although five or six of these mixing parameters may be required for some electrolyte 
mixtures, in other cases such as when the ionic strength range is more limited or when the 

electrolytes are common-ion mixtures of the same charge type, fewer parameters may be 
needed. Some mixing parameter values may be small and, although including them may 

slightly improve the representation of the source data, their presence may or may not be 

significant. This is especially true for terms that represent asymmetric mixing effects, 
because they are generally much smaller than those for symmetric mixing effects. 

Consequently, it is desirable to compare fits with different numbers of mixing parameters 
in order to select the optimal set. However, the largest tabulation of neutral-electrolyte 

mixing parameters [4] only gives those for the author’s preferred combination of mixing 

parameters, so it is not possible to directly test whether other combinations of model 
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parameters would have yielded better or comparable representations without re-creating 

the original data base. 
Rard and Wijesinghe [13] and Wijesinghe and Rard [14] described a general 

methodology whereby the parameters of a thermodynamic model can be directly 
transformed into a variant of that model with a reduced number of model parameters. 

They applied this approach to the specific case of transforming the parameters of 

extended forms of Pitzer’s ion-interaction model for single-electrolyte solutions to those 
of the standard 3-parameter form. This approach has the advantage that the optimized 

parameters for the standard model are obtained from those of the extended model without 
needing to regenerate the database used to evaluate the original parameters. In the present 

report we extend their methodology to ternary mixed-electrolyte solutions and present 

analytical equations for transforming the parameters of Scatchard’s neutral-electrolyte 
model [3] to variants of the same model with fewer mixing parameters. This provides a 

simple method to test whether different combinations of fewer model parameters can 

adequately represent the same activity data. 
 

2 Scatchard’s Neutral-Electrolyte Model Equation  
 

Scatchard’s neutral-electrolyte model equation for the osmotic coefficient of a mixture of 

two electrolytes [3], with additional terms as described by Leifer and Wigent [7] for 
quadruplet and higher-order ionic interactions, can be written in the form: 
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where 

! 

"
S  is the osmotic coefficient of the mixed-electrolyte solution as expressed by 

Scatchard’s model, mi is the molality and νi the number of ions formed by dissociation of 

one molecule of the ith electrolyte, subscripts 1 and 2 denote the two electrolytes, 

! 

"
1

*  and 

! 

"
2

*  are the osmotic coefficients of the two single-electrolyte solutions evaluated at the 
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total ionic strength of the solution I, y1 is the ionic-strength fraction of electrolyte 1 and y2 

= 1 – y1 the ionic-strength fraction of electrolyte 2, and the blm are empirical mixing 
parameters. The highest-order ionic interactions considered in this report are defined by L 

= 2 and M = 3 but, in principle, they can be of even higher order subject to the restriction 
that M = L + 1. The number of blm parameters in this model is equal to N = {(L + 1)(2M – 

L)/2}. When the interaction terms are written out explicitly in Eq. 1 (and Eq. 5 below), 

they are only given to the quadruplet ionic interaction level because we are not aware of 
any systems for which additional terms are needed. The first two terms on the right-hand-

side of the second line of Eq. 1 represent ideal mixing at constant ionic strength 

according to this model, i.e., when all of the blm = 0. The 
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represent non-ideal mixing effects that are asymmetrical in the ionic-strength fractions of 

the two electrolytes. 

The equation that was generally used by Scatchard and by Rush [3, 4] to represent the 

osmotic coefficient of a solution of a single electrolyte i can be re-written in the 

equivalent form: 
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where Bi is related to the ion-size parameter for that electrolyte, zic is the charge on the 

cation and zia the charge of the anion (with sign), Aγ is the Debye-Hückel limiting-law 

slope for ln γ±, and a(ij) is the jth empirical fitting parameter for electrolyte i. (These 

authors actually wrote their equations in terms of the αJ function where αJ = 1 – φ.) 

 When analyzing isopiestic data for aqueous mixed electrolytes with the neutral-

electrolyte equation, Rard and Miller [15, 16] used an alternative expression for the 
osmotic coefficient of a single electrolyte that is based on the Debye-Hückel limiting 

law. Their binary solution equation can be re-written in the form: 
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where the Aij are empirical parameters. 
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 Pavićević et al. [11] and Miladinović et al. [12] analyzed isopiestic data for 
mixed electrolyte solutions with Scatchard’s neutral-electrolyte model [3] with the 

single electrolyte osmotic coefficients being represented by Pitzer’s standard ion-
interaction model [9] or an extended (Archer-type) [17] ion-interaction model. The 

extended equation can be written as:  
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where Aφ is the Debye-Hückel limiting-law slope for the osmotic coefficient, νic is the 

number of cations formed by dissociation of one molecule of electrolyte i and νia the 

corresponding number of anions, and νi = νic + νia. Pitzer’s standard model can be 

recovered from this equation by setting 

! 

C
ic,ia

(1)  = 0 and multiplying the numerical 

coefficient of the last term by (νia/νic)1/2/2zic. 

 Pitzer et al. [18] have reported a completely general form of the ion-interaction 

model that can give very accurate representations of osmotic coefficient data for single 
electrolyte solutions. Although this generalized equation has yet to be used in 

combination with Scatchard’s neutral-electrolyte model [3], its application should yield 
very accurate model fits to activity data for mixed-electrolyte solutions. We note in this 

regard that Wang et al. [19] have evaluated the parameters of this generalized model for 

40 aqueous trivalent rare-earth chlorides, perchlorates, and nitrates at 298.15 K to the 
highest studied molalities. Thermodynamic equations based on the mole-fraction 

composition scale [20 – 22] have also been used to represent the osmotic and activity 
coefficients of very soluble electrolytes, and their single-electrolyte equations could 

similarly be used in conjunction with the mixing terms of Scatchard’s neutral-electrolyte 

model [3] given above in Eq. 1. 
 We also note that we have partly changed some notation in some of the above 

equations from those used in the cited sources, in order to give a more uniform 

presentation.  
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 Equation 1, as written above, is a function of several composition variables (the 

ionic molalities of each constituent electrolyte, the sum of these ionic molalities, and the 
total ionic strength of the mixture) along with the ionic-strength fractions of both 

electrolytes in the mixture. To facilitate the analysis in the next section, we now recast 
the mixing terms of this equation in terms of the ionic-strength fraction of only the first 

electrolyte: 
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  (5) 

 
3 Parameter Transformation Equations 
 

Rard and Wijesinghe [13] and Wijesinghe and Rard [14] described a general method by 
which parameters of a thermodynamic model can be transformed to those of a variant of 

the same model having fewer adjustable parameters. They applied this method to the 

specific case of converting the parameters of extended forms of Pitzer’s ion-interaction 
model for single electrolyte solutions, given by Eq. 4 and also for an extension with an 

additional 
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(2)  = 0. The resulting conversion equations, although complicated, have 

analytical solutions. 

 The starting point of their approach was the adoption of the mean square 

difference between the two functions for the osmotic coefficient, having known and 

unknown parameters, as the objective function that was to be minimized over the ionic 

strength range (and normalized by the maximum ionic strength) of interest: 
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where φEA is the osmotic coefficient as given by the extended ion-interaction model with 

known parameters, and φP is the osmotic coefficient as given by the standard three-

parameter ion-interaction (Pitzer) model whose optimum parameters were to be 

determined. By setting to zero all of the derivatives of 

! 

E" ,I

2  with respect to each of the 

parameters of the standard Pitzer model, a set of simultaneous equations, whose solution 

yields the desired transformation equations, was obtained for the unknown model 

parameters. The notation 

! 

E" ,I

2  is used because it represents the mean of the square 

“error” for the derived standard ion-interaction model that results from the use of fewer 

model parameters, which is in addition to that present in the source model resulting from 

limitations in the thermodynamic data used for its parameter evaluation. 

 For a ternary mixed-electrolyte solution containing two solutes, the analog of Eq. 

6 for evaluating the mean-square error in the osmotic coefficient requires integration 

over two composition variables. The analog of Eq. 6 is thus 
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However, after considering the form of Scatchard’s neutral electrolyte equation as given 

by Eq. 5, an alternate form of the objective function that leads to a relatively simple 

expression for the evaluation of the model parameters is 
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where φS is given by Eq. 5 and φS,t is a truncated form of this equation that contains the 

same binary solution contributions but has fewer blm mixing parameters. It should be 

noted that the source model for φS might not contain all six of the blm mixing parameters 

if one or more were set to zero in their original evaluation from the source data. The 

denominator of Eq. 7b was chosen to normalize the model error function so that 

! 

E f ,I ,y

2  

corresponds to the mean-square difference function for the osmotic coefficient. The 
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mean square error function 

! 

E f ,I ,y

2  was defined for the osmotic coefficient rather that an 

activity coefficient for one of the electrolytes (or the equivalent excess Gibbs energy) 

because the primary Gibbs energy data for most electrolytes and mixtures are osmotic 

coefficient values derived from isopiestic measurements. 

 We now consider the denominator of Eq. 7b, and will first transform 
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where mic and mia are, respectively, the ionic molalities of cation and anion resulting 

from the complete dissociation of electrolyte i. The condition of electroneutrality for this 

electrolyte i yields 
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Inserting Eqs. 9a and 9b into Eq. 8 yields 
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and for the second electrolyte,  
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Solving for ν1m1 and ν2m2 in these equations and inserting the results into the definition 

of the total ionic strength for the mixture (where I = I1 + I2) yields: 
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and thus 
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As can be seen, this quantity depends only on the ionic-strength fraction y1 of solute 1 

(one of the integration variables) and the valences of the ions of both electrolytes, but it 

is independent of the total ionic strength I. 

 The limits of integration for the integrals of Eqs. 7a and 7b are given as y1 = 0 to 

y1 = 1 for the ionic strength fraction, and I = 0 to I = Imax for the total ionic strength. 

When activity measurements are made with the Emf method, it is common to make 

them at a series of constant ionic strengths and various values of y1 at each I. In this case 

Imax will have a constant value at all y1 and the integrals of Eq. 7b can easily be 

evaluated. However, the most commonly used experimental method for measuring 

thermodynamic activities is the isopiestic method; this method yields the molalities of 

solutions having identical solvent (water) activities and thus the values of Imax will vary 

with the ionic-strength fraction of each solute, i.e., Imax = Imax(y1). Although the 

integrations of Eq. 7a and 7b can still be done once Imax = Imax(y1) is known, the integrals 

will be much more complicated to evaluate than if a fixed limit of Imax = constant is 

imposed. We will thus use the constraint Imax = constant, and then test whether the 

conversion of mixing parameters for Scatchard’s equation is also reliable when the 

mixing parameters of Eq. 1 are based on isopiestic measurements with a constant water 

activity cutoff or some other variable upper limit such as when the isopiestic 

measurements at each value of y1 extend to the solubility limit, Imax = Isaturation. 

 When a constant total ionic strength upper limit of integration Imax is imposed, 

the two integrals of the denominator of Eq. 7b can be separated: 
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 For convenience, we define the following two functions: 
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i=1

2

% = y
1
y
2
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1
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2
)
l
I
m
blm
t

m= l+1

M

%
l= 0

L

%    (16) 

and their difference is given by 

! 

"f (#) $ f (# S,t
) % f (# S

)

=

( & imi

i=1

2

' )(# S,t %# S
)

I
% (& imi

I
)(#i

*,t %#i
*
)

i=1

2

'

= y
1
(1% y

1
) (2y

1
%1)l Im (blm

t % blm
m= l+1

M

'
l= 0

L

' )

     (17) 

where the superscript t denotes quantities for Scatchard’s neutral-electrolyte model [3] 

where the number of mixing parameters has been truncated. Because the parameters of 

! 

"
1

*,t , 

! 

"
1

* , 

! 

"
2

*,t , and 

! 

"
2

*  are generally fixed independently using thermodynamic data for the 

single electrolyte solutions rather than being optimized simultaneously with the mixing 

parameters, we will let 

! 

"
1

*,t #"
1

*
= 0  and 

! 

"
2

*,t #"
2

*
= 0 . Then, from Eqs. 17 and 5: 

! 

"f (#) =

( $ imi

i=1

2

% )(# S,t &# S
)

I

= y
1
(1& y

1
) (2y

1
&1)l Im (blm

t & blm
m= l+1

M

%
l= 0

L

% )

     (18) 



13 

where 

! 

b
lm

t  is a mixing parameter of the truncated form of the neutral-electrolyte model 

(whose value could be zero) corresponding to the known blm parameter of the source 

model. 

 By inserting Eq. 14 and the top line of Eq. 18 into Eq. 7b, we obtain 

! 

E f ,I ,y

2
= ( 1

Dmax

) {"f (#)}2

I =0

Imax

$ dIdy1
y1 =0

y1 =1

$        (19) 

The values of the 

! 

b
lm

t  parameters that will minimize the value of the mean square error 

! 

E f ,I ,y

2  for the function Δf(φ) (i.e., will thus give the optimum representation of φS with 

the truncated set of mixing parameters) are obtained by setting equal to zero all of the 

derivatives 

! 

"E f ,I ,y

2

"bjk
t

 and then simultaneously solving the resulting equations for each 

! 

b
lm

t  

in terms of the known blm parameters. Recall that the {

! 

b
lm

t } set of parameters will have 

fewer members than the {blm} set, and may even include the trivial case where all of the 

! 

b
lm

t  = 0. The following derivations will be done for the isothermal case because the 

parameters of Scatchard’s neutral-electrolyte model [3, 4] are almost always reported at 

a single temperature, but these calculations could easily be generalized for temperature-

dependent models [13, 14] where blm = blm(T) and 

! 

b
lm

t
= b

lm

t
(T) . 

 As can be seen from Eq. 18, the factor 

! 

{"f (#)}2  occurring in Eq. 19 will have 

many terms but, because they are polynomials in y1 and I, they can be readily integrated. 

The complexity of the integrand of Eq. 19 can be simplified by first differentiating under 

the integral signs rather that doing this after the integrations have been performed. This 

yields a set of up to six equations of the form: 

! 

"E f ,I ,y

2

"bjk
t

= ( 1

Dmax

) "

"b
jk

t
[ {#f ($)}2

I =0

Imax

% dIdy1]
y1 =0

 y1 =1

%

= ( 2

Dmax

) {#f ($)}{"#f ($)

"b jk

t
}

I =0

Imax

% dIdy1

y1 =0

 y1 =1

%

= 0

     (20) 

The partial derivatives arising from Eq. 20 can be easily calculated using the 

general form of Δf(φ) given by Eq. 18: 
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! 

"#f ($)

"bjk
t

= y
1
(1% y

1
)(2y

1
%1) j I k        (21a) 

! 

"#f ($)

"blm
= y

1
(1% y

1
)(2y

1
%1)l Im        (21b) 

and their values for the six-parameter case are given in Appendix A. Also note that some 

of the blm parameters may not be present in the source model and that fewer 

! 

b
lm

t  

parameters will be used. For those cases the corresponding partial derivatives with 

respect to the missing parameters will be equal to zero rather than being given by Eqs. 

21a and 21b. 

 The function Δf(φ) as given by Eq. 18 is linear in each of the unknown mixing 

parameters 

! 

b
lm

t  and the known mixing parameters 

! 

b
lm

. Consequently, it can be re-written 

in the more convenient form  

! 

"f (#) = {(
m= l+1

M

$
l= 0

L

$
%"f (#)

%blm
t
)blm

t
+ (%"f (#)

%blm
)blm}     (22) 

with the additional constraint that the number of mixing parameters of the truncated 

neutral-electrolyte model Nt < N, where N is the corresponding number of parameters for 

the source (non truncated) neutral-electrolyte model. Inserting Eq. 22 into Eq. 20 then 

yields 

! 

"E f ,I ,y

2

"bjk
t

= ( 2

Dmax

) {#f ($)}{"#f ($)

"b jk

t
}

I =0

Imax

% dIdy1

y1 =0

 y1 =1

%

= ( 2

Dmax

) {(
m= l+1

M

&
l= 0

L

&
"#f ($)

"blm
t

)blm
t

+ ("#f ($)

"blm
)blm}("#f ($)

"bjk
t

)]
I =0

Imax

% dIdy1

y1 =0

 y1 =1

%

= {(
m= l+1

M

&
l= 0

L

&
2

Dmax

) ("#f ($)

"b jk

t
)("#f ($)

"blm
t

)dIdy1}blm
t

I =0

Imax

%
y1 =0

 y1 =1

%

+ {(
m= l+1

M

&
l= 0

L

&
2

Dmax

) ("#f ($)

"b jk

t
)("#f ($)

"blm
)

I =0

Imax

%
y1 =0

 y1 =1

% dIdy1}blm

= 0

 (23) 

where, depending on the number N of 

! 

b
lm

 parameters in the source model being 

considered, there may be up to N such equations. Equation 23 can be re-expressed in 

matrix form as: 
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! 

A jk,lmblm
t

m= l+1

M

"
l= 0

L

" = B jk,lmblm = c jk

m= l+1

M

"
l= 0

L

"        (24) 

where 

! 

A jk,lm " (#$f (%)

#b jk

t
)

I =0

Imax

&
y1 =0

 y1 =1

& (#$f (%)

#blm
t

)dIdy1      (25) 

! 

B jk,lm " #
I =0

Imax

$
y1 =0

 y1 =1

$ (%&f (')

%b jk

t
)(%&f (')

%blm
)dIdy1      (26) 

and 

! 

c jk " B jk,lmblm
m= l+1

M

#
l= 0

L

#          (27) 

The integrated forms of 

! 

B jk,lm  are given in Appendix B for the six-parameter case. 

Equation 24 is a linear matrix equation for the unknown parameters 

! 

b
lm

t  with a constant 

coefficient matrix 

! 

A jk,lm  and the right-hand side vector cjk that can be evaluated from Eq. 

27 using the known source model parameters blm and the constant coefficient matrix 

! 

B jk,lm . Simultaneous equations of this type can be solved by a standard matrix technique 

such as Gaussian elimination. 

Because we are examining the case where the maximum ionic strength Imax is 

independent of the ionic-strength fraction y1, the integrations over ionic strength and 

ionic-strength fraction can be performed separately:  

! 

B jk,lm " {y1(1# y1)(2y1 #1)
j
I
k
}{y1(1# y1)(2y1 #1)

l
I
m
}dIdy1

I =0

Imax

$
y1= 0

y1=1

$

= ( I
k+m
dI

I =0

Imax

$ ) y1
2
(1# y1)

2
(2y1 #1)

j+ l

y1= 0

y1=1

$ dy1

= ( Imax
k+m+1

k + m +1
) ( 1

2
5
)

z=#1

z= +1

$ (1# z2)2 z j+ ldz

= ( Imax
k+m+1

k + m +1
)( 1
2
5
) (z

j+ l # 2z j+ l+2 + z
j+ l+4

)
z=#1

z= +1

$ dz

   (28) 

where the third line of Eq. 28 has been obtained by making the substitution of z = 2y1 – 

1. For a constant value of Imax the last integral can be integrated directly to yield the 

following closed-form expression for the 

! 

B jk,lm  coefficient matrix elements: 
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! 

B jk,lm ={ Imax
k+m+1

16(k + m +1)
}{ 1

j + l +1
"

2

j + l + 3
+

1

j + l + 5
}

={ Imax
k+m+1

2(k + m +1)( j + l +1)( j + l + 3)( j + l + 5)
} when j + l is even

  (29a) 

and 

! 

B jk,lm = 0 when j + l is odd       (29b) 

Furthermore, the coefficient matrix element 

! 

A jk,lm  can be obtained from the 

! 

B jk,lm  

coefficient matrix element by setting  

! 

A jk,lm = B jk,lm           (30) 

for all 

! 

bjk
t
" 0  and 

! 

b
lm

t
" 0. Least-squares minimization treatments of linear functions, 

such as described above, always produce symmetric coefficient matrices so that both 

coefficient matrices are symmetrical with respect to their row and column indices. That 

is, 

! 

A jk,lm = Alm, jk           (31) 

! 

B jk,lm = Blm, jk           (32) 

 As can be seen from Appendix B, 16 of the 36 matrix elements are zero for the 

six-parameter case when, according to Eq. 29b, j + l = 1 or 3 (odd number). As an 

example, the matrices Ajk,lm and Bjk,lm and the right-hand side vector cjk for the six-

parameter source model and four parameter truncated model with non-zero 

! 

b
01

t , 

! 

b
02

t , 

! 

b
12

t , 

and 

! 

b
23

t  values are given in Appendix C. 

 

4 Evaluation of the Parameter Fitting Error 
 

We have adopted the mean square difference 

! 

E f ,I ,y

2  between the Δf(φ) values calculated 

using the truncated and full parameter models as the measure of accuracy of fitting of 
the truncated parameter model to the source model. Therefore, to be able to assess the 

error, it is necessary to evaluate the value of 

! 

E f ,I ,y

2  after computing the parameters of the 

truncated model as described in Section 3. There we presented a convenient method of 

deriving the least-squares minimization equations that avoids direct integration of the 
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expression given by Eq. 19 for the mean square error 

! 

E f ,I ,y

2 . For complicated higher-

order models, these integrals could be evaluated by a numerical quadrature of the 

function {Δf(φ)}2, and similarly for the mean square difference in the osmotic coefficient 

! 

E" ,I ,y

2  defined by Eq. 7a. However, because of the linearity of the model with respect to 

the parameters of both the truncated and full parameter models, we are able to compute 

! 

E f ,I ,y

2  analytically. We first define the difference Δblm between the truncated and full 

parameter model values by 

 

! 

"b
lm
# b

lm

t
$ b

lm
       (33) 

with the understanding that the parameters 

! 

b
lm

t  that do not exist in the truncated model 

are set equal to zero in Eq. 33. Then, noting that 

 

! 

"#f ($)

"blm
t

= %
"#f ($)

"blm
=
"#f ($)

"#blm
     (34) 

we are able to recast Δf(φ), given by Eq. 22, as  

 

! 

"f (#) = ($"f (#)
$"blm

)"blm
m= l+1

M

%
l= 0

L

%      (35) 

Substituting this expression into Eq. 19 yields 

! 

E f ,I ,y

2
= ( 1

Dmax

) [{ ("#f ($)
"#b jk

)#bjk
k= j+1

M

%
j= 0

L

%
I = 0

Imax

&
y1= 0

y1=1

& }{ ("#f ($)
"#blm

)#blm}]dIdy1
m= l+1

M

%
l= 0

L

%

= ( 1

Dmax

) [ ("#f ($)
"#b jk

)("#f ($)
"#blm

)
I = 0

Imax

&
y1= 0

y1=1

& dIdy1
m= l+1

M

%
l= 0

L

%
k= j+1

M

% ]#b jk#blm
j= 0

L

%

= ( 1

Dmax

) [
m= l+1

M

%
l= 0

L

%
k= j+1

M

% B jk,lm#b jk#blm]
j= 0

L

%

 (36) 

so that 

! 

E f ,I ,y

2  can be calculated from this equation that is quadratic in ΔbjkΔblm using the 

previously calculated values of the coefficient matrix elements Bjk,lm and the differences 

Δblm between the corresponding parameters of the truncated and full parameter models. 

For the case of L = 2 and M = 3, the full expression for 

! 

E f ,I ,y

2  is explicitly given by 
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! 

DmaxE f ,I ,y

2
= ( Imax

3

90
)"b01"b01 + ( Imax

4

120
)"b01"b02 + ( Imax

5

150
)"b01"b03 + ( Imax

5

1050
)"b01"b23

+ ( Imax
4

120
)"b02"b01 + ( Imax

5

150
)"b02"b02 + ( Imax

6

180
)"b02"b03 + ( Imax

6

1260
)"b02"b23

+ ( Imax
5

150
)"b03"b01 + ( Imax

6

180
)"b03"b02 + ( Imax

7

210
)"b03"b03 + ( Imax

7

1470
)"b03"b23

+ ( Imax
5

1050
)"b12"b12 + ( Imax

6

1260
)"b12"b13

+ ( Imax
6

1260
)"b13"b12 + ( Imax

7

1470
)"b13"b13

+ ( Imax
5

1050
)"b23"b01 + ( Imax

6

1260
)"b23"b02 + ( Imax

7

1470
)"b23"b03 + ( Imax

7

4410
)"b23"b23

(37) 

This expression for 

! 

E f ,I ,y

2  could also have been obtained by direct analytical integration 

of Eq. 19, and the minimization equations and coefficient matrix elements Bjk,lm given by 

Eq. 26 can be obtained by differentiating this function with respect to the Δbjk.  

 

5 Examples of Parameter Conversions: the NaCl + SrCl2 + H2O, NaCl + MgCl2 + 
H2O, and MgCl2 + MgSO4 + H2O Systems 
 

In this section we give examples of parameter conversions for three systems and 
compare the results to the corresponding parameter values evaluated directly from the 

source isopiestic data. Table 1 reports these parameters for the NaCl + SrCl2 + H2O 
system at 298.15 K [15] for the ionic-strength range Imax ≤ 6.16 mol·kg–1 and Table 2 for 

the full composition range where the upper limits are the crystallization concentrations 

Imax ≤ 11.2 mol·kg–1 (very close to saturation for NaCl-rich solutions and probably 
slightly oversaturated for SrCl2-rich solutions). Similarly, Table 3 lists these parameters 

for the NaCl + MgCl2 + H2O system at 298.15 K [16] for the ionic-strength range Imax ≤ 
6.2 mol·kg–1 and Table 4 for the full composition range where the upper limits are the 

crystallization concentrations Imax ≤ 9.873 mol·kg–1 (very close to saturation). Table 5 

gives the corresponding parameters for the MgCl2 + MgSO4 + H2O system at 298.15 K 
[12] where the uppermost concentrations are those at isopiestic equilibrium (5.255 

mol·kg–1 ≤ Imax ≤ 9.432 mol·kg–1). We note that for fits to the NaCl + SrCl2 + H2O 
isopiestic data over the full composition region, only a single set of recommended 
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parameters was reported in Ref. [15]. However, the original evaluations were preserved 

by one of the authors (J.A.R.) and these other parameter sets are also given in Table 2.  
 The above examples were chosen to compare the reliability of the parameter 

conversions under three different Imax cutoff conditions. 1) For the NaCl + SrCl2 + H2O 
and NaCl + MgCl2 + H2O systems the Imax values of the mixtures exceed, on an ionic-

strength basis, the range of validity of the equation for the osmotic coefficients of 

NaCl(aq). The parameters reported in Tables 1 and 3 correspond to a constant Imax cutoff 
where the equations used to represent the osmotic coefficients of both limiting binary 

solutions are valid {in this case the cutoff is the ionic strength of saturated NaCl(aq)}. 
Because this case corresponds to the Imax = constant cutoff condition used to derive the 

parameter conversion equations, these parameter conversions should be fairly accurate. 

2) For the NaCl + SrCl2 + H2O and NaCl + MgCl2 + H2O systems when the Imax values of 
the mixtures are constrained by the crystallization limits of the mixtures, Tables 2 and 4, 

the equation used to represent the osmotic coefficients of NaCl(aq) is being employed 

well above its range of validity. This equation for NaCl(aq) is of the form of Eq. 2, and 
equations of this type are not expected to extrapolate reliably much above the highest 

molality where they are constrained. Thus, the mixing parameters evaluated under this 
condition not only represent mixing effects but are also compensating to some extent for 

deficiencies in the extrapolated osmotic coefficients of NaCl(aq). Both the directly 

calculated and transformed parameters should be the least accurate under these 
conditions. 3) For the MgCl2 + MgSO4 + H2O system the Imax values of the mixtures are 

those for isopiestic equilibrium (equal activities of water) and the ionic strengths of all 
of the mixtures fall within the range of validity of the extended Pitzer equations for the 

limiting binary solutions. The parameter conversions in this case should not be as 

accurate as for case 1, but are expected be more accurate than for case 2. 
 The converted parameters obtained with the constant constraint Imax = 6.16 

mol·kg–1 or Imax = 6.2 mol·kg–1, reported in Tables 1 and 3 for the NaCl + SrCl2 + H2O 
and NaCl + MgCl2 + H2O systems, respectively, are generally close to those obtained by 

direct fitting, especially for the b01, b02 and b03 mixing parameters that represent the 

(dominant) symmetrical mixing effects. Not surprisingly, for the b12 and b13 mixing 
parameters that represent the much smaller asymmetric mixing effects, the agreement is 
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not as good. It is also probable that the converted parameters for the truncated models, 

calculated as described above, are generally more accurate than those obtained by direct 
fitting especially when the model contains too few model parameters to represent the 

source data to near experimental accuracy. This is because when certain mixing terms 
that are needed to represent the experimental osmotic coefficients are missing, the 

parameters of other terms obtained by least squares will change in an attempt to 

compensate for the missing terms.  
 As anticipated, the agreement between the converted and directly evaluated 

mixing parameters reported in Tables 2, 4, and 5 is not as good as those of Tables 1 and 
3 because the value of Imax were not constant in the direct (least-squares) evaluations, 

whereas Imax was assumed to be constant for the parameter conversions. 

For the converted parameters, when a particular combination of mixing 
parameters for symmetrical mixing (b01 and/or b02 and/or b03) is used, their values are 

unaffected by the presence or absence of parameters for the first asymmetrical-mixing 

term (b12 and/or b13). Similarly, when a particular combination of parameters for 
asymmetrical mixing (b12 and/or b13) is used, their values are unaffected by the presence 

or absence of parameters for symmetrical mixing (b01 and/or b02 and/or b03). This is 
because the corresponding partial derivatives that occur in the integrals for Ajk,lm and 

Bjk,lm, Eqs. 25 and 26, are orthogonal and their corresponding integrals are zero as shown 

in Appendix B, as a consequence of the mixing terms with b0i coefficients being even 
functions of y1 whereas the mixing terms with b1i coefficients are odd functions of y1. 

However, the mixing term with b23 is an even function of y1, so its presence affects the 
transformed values of b01, b02 and b03, but not those of b12 and b13. 

The above direct comparison of parameters gives an incomplete picture of the 

reliability of the converted parameters. A direct comparison between values of the 
osmotic coefficients calculated with a particular converted parameter set, and the 

corresponding set obtained directly by least-squares analysis of the experimental source 
data, should be a better test for the accuracy of our parameter conversion method. This 

comparison was done and plots were made of the calculated differences in osmotic 

coefficients as a function of the total ionic strength at fixed values of y1 = (0.1. 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) for several parameter sets for each of the five test 
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systems. For calculations representing models that apply to the highest experimental 

ionic strengths (i.e., for the mixing coefficients given in Tables 2, 4, and 5), the plots 
extend only to the values of Imax at each value of y1 (which were estimated graphically 

and are summarized in Table 6) rather than to the highest (constant) value of Imax that 
was assumed when making the parameter transformation. That is, the plots only extend 

to the highest ionic strengths where isopiestic data was available to constrain the source 

model. 
Figures 1 to 6 show these osmotic coefficient differences for the two cases where 

our parameter conversion method is expected to be most accurate: the NaCl + SrCl2 + 
H2O system with Imax ≤ 6.16 mol·kg–1 (Table 1 coefficients) and the NaCl + MgCl2 + 

H2O system with Imax ≤ 6.2 mol·kg–1 (Table 3 coefficients). For both of these systems the 

illustrated cases are for the parameter sets {b01}, {b01, b02, b03}, and the set with one 
fewer parameter than the source model: {b01, b02, b03, b12} for NaCl + SrCl2 + H2O and 

{b01, b02, b03, b12, b13} for NaCl + MgCl2 + H2O. In these plots the largest differences are 

seen to be Δφ < 0.0008, which is less than the typical 0.1 to 0.2 % uncertainty of the 

isopiestic data used to evaluate the parameters of the source models. We also note that 
the Δφ deviations are linear and all of one sign, as expected, when only the single b01 

parameter is used, see Figs. 1 and 4. For a very few of the parameter combinations given 

in Tables 1 and 3, not illustrated, there are maximum differences Δφ of about twice as 

large as the illustrated cases but only at high ionic strengths and with certain values of 

y1. For the majority of the parameter combinations Δφ < 0.0008 and consequently the 

converted parameters yield representations of the source data as accurate as those 
obtained directly by direct least-squares fits to the source data. 

When the directly evaluated source model parameters are based on experimental 
data where the ionic strength cutoff varied with the ionic-strength fraction, such as when 

they are constrained by isopiestic ionic strengths (MgCl2 + MgSO4 + H2O, Table 5 

coefficients) or solubility / oversaturation ionic strengths (NaCl + SrCl2 + H2O, Table 2 
coefficients; NaCl + MgCl2 + H2O; Table 4 coefficients), then parameters converted by 

this approach assuming a constant ionic-strength cutoff yield RMSE(φ) differences 

about an order of magnitude larger than for the cases described in the previous 
paragraph. We restrict the plots for these cases, Figs. 7 to 9, to the parameter set {b01, 
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b02, b03}. It is evident from these figures that the values of Δφ for this parameter set are 

one to two orders of magnitude larger than those for the Imax = constant case, and thus 

this assumption does not yield accurate parameter transformations when the source 
model was based on ionic strength cutoffs that vary with the value of y1. We note, 

however, that the representations for NaCl + SrCl2 + H2O (Fig. 7) and NaCl + MgCl2 + 
H2O (Fig. 8) are much better up to I 

! 

"  6 mol·kg–1, where the NaCl(aq) binary solution 

model parameters are constrained, than at higher concentrations where the NaCl(aq) is 

being extrapolated. However, for some other parameter sets these larger deviations 
begin to occur at lower ionic strengths. For the condition where the Imax cutoffs vary with 

y1, an extension of our approach will be required to yield accurate parameter 

conversions. 
In deciding whether a particular truncated model with fewer parameters obtained 

by our parameter conversion method gives an adequate representation of the source data, 
the errors from converting the parameters from the source fits with a larger number of 

parameters to those of a truncated model with fewer parameters, RMSE(∆φ), also need 

to be considered. Table 7 reports these RMSE(∆φ) values for all of the model parameter 

sets reported in Tables 1 to 5. The order of these RMSE(∆φ) values approximately 

follows those of the standard deviations σ(φ) obtained by direct fitting [12, 15, 16], with 

those truncated models with the smallest values of RMSE(∆φ) generally having the 

smallest values of σ(φ), and those with the largest values of RMSE(∆φ) generally having 

the largest values of σ(φ). In addition, for all of the parameter combinations for NaCl + 

SrCl2 + H2O with I ≤ 6.16 mol·kg–1 (Table 1) and NaCl + MgCl2 + H2O with I ≤ 6.2 

mol·kg–1 (Table 3), the values of σ(φ) obtained by direct fitting are slightly larger than 

the corresponding RMSE(∆φ) values with the difference generally being less than 0.001. 

This is also the case for the NaCl + MgCl2 + H2O system with I ≤ 9.873 mol·kg–1 (Table 

4). In contrast, for MgCl2 + MgSO4 + H2O with I ≤ 9.432 mol·kg–1 (Table 5) the values 

of σ(φ) obtained by direct fitting are slightly smaller than the corresponding RMSE(∆φ) 

values, whereas for NaCl + SrCl2 + H2O with I ≤ 9.873 mol·kg–1 (Table 2) the values of 

RMSE(∆φ) are sometimes larger and sometimes smaller than σ(φ). Thus, although 

RMSE(∆φ) appears to be a good predictor of the reliability of converted truncated 



23 

models when the source model is based on an Imax = constant cutoff, it is not a reliable 

measure of accuracy in representing the source data when Imax is a function of the ionic 

strength fraction y1. 

 

6 Conclusions 

 

This paper describes an analytical method for transforming the mixing parameters of 

Scatchard’s neutral-electrolyte-type models with larger numbers of mixing parameters 

directly to those of models with fewer mixing parameters, without recourse to the source 
data used for evaluation of the original model parameters. The resulting analytical 

transformation equations are evaluated explicitly for the case where the original source 

model parameters (ternary system) were evaluated with a maximum ionic strength cutoff 
that is independent of the ionic strength fraction of the electrolytes. A comparison for 

two test systems, NaCl + SrCl2 + H2O and NaCl + MgCl2 + H2O with a constant ionic 

strength cutoff corresponding to the saturated NaCl(aq) solution ionic strength, indicated 

that 1) osmotic coefficients calculated from the transformed parameter sets are in 

excellent agreement with those calculated with the corresponding parameters evaluated 

directly from isopiestic data, and 2) the calculated errors for the osmotic coefficient from 

reducing the number of model parameters corresponds well with the standard deviation 

for the corresponding parameter sets obtained by direct fitting. Thus, our parameter 

transformation method yields excellent results under these conditions. 

 When the source model parameters were evaluated at maximum ionic strengths 

that vary with the ionic strength fractions of the solute, osmotic coefficients calculated 

from the parameters transformed under the assumption of a constant ionic strength are 

significantly less reliable, but the uncertainty varies on a case-by-case basis. Because of 

this, we cannot recommend our method under these conditions. However, if Imax is a 

smooth function of y1, as occurs for example when the values of Imax correspond to 

isopiestic equilibrium conditions, it should be possible to represent Imax as a simple 

polynomial of y1. Although the resulting transformation equations should still have 

analytical solutions, they will be much more complicated than those reported here for 

the Imax = constant case. Furthermore, if the values of Imax are not a smooth function of 
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y1, such as when they as based on saturated solution molalities with more than one 

precipitating phase, then it may be necessary to switch from analytical integration to 

numerical quadruture of the transformation integrals. These refinements are beyond the 

scope of the present paper. 
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Table 1 Parameters for Scatchard’s neutral-electrolyte model for NaCl + SrCl2 + H2O at 

298.15 K based on the five-parameter source model with I ≤ 6.16 mol·kg–1 [15] and 

various models with a reduced number of model parameters a 

b01 b02 b03 b12 b13 RMSE(φ) and 
RMSE(f) 

+6.239 × 10–3     0.00010 (0.00009) 

(+6.02 × 10–3)      

+1.920 × 10–2 –2.806 × 10–3    0.00062 (0.00059) 

(+1.458 × 10–2) (–2.03 × 10–3)     

+5.240 × 10–3 +4.750 × 10–3 –9.200 × 10–4   0.00029 (0.00028) 

(+5.53 × 10–3) (+4.30 × 10–3) (–8.7 × 10–4)    

+5.240 × 10–3 +4.750 × 10–3 –9.200 × 10–4 –1.473 × 10–3  0.00006 (0.00006) 

(+5.44 × 10–3) (+4.49 × 10–3) (–8.8 × 10–4) (–1.47 × 10–3)   

(+5.24 × 10–3) b (+4.75 × 10–3) b (–9.2 × 10–4) b (–2.91 × 10–3) b (+2.8 × 10–4) b 0.00098 b 

+1.920 × 10–2 –2.806 × 10–3  –1.473 × 10–3  0.00052 (0.00050) 

(+1.455 × 10–2) (–1.88 × 10–3)  (–1.46 × 10–3)   

+1.920 × 10–2 –2.806 × 10–3  –2.910 × 10–3 +2.800 × 10–4 0.00056 (0.00050) 

(+1.464 × 10–2) (–1.90 × 10–3)  (–1.92 × 10–3) (+0.9 × 10–4)  

+6.239 × 10–3   –1.473 × 10–3  0.00022 (0.00019) 

(+6.65 × 10–3)   (–1.57 × 10–3)   

+6.239 × 10–3   –2.910 × 10–3 +2.800 × 10–4 0.00035 (0.00032) 

(+6.64 × 10–3)   (–0.95 × 10–3) (–1.2 × 10–4)  

 +7.302 × 10–3 –1.210 × 10–3   0.00030 (0.00029) 

 (+7.37 × 10–3) (–1.25 × 10–3)    

 +7.302 × 10–3 –1.210 × 10–3 –1.473 × 10–3  0.00007 (0.00007) 

 (+7.51 × 10–3) (–1.25 × 10–3) (–1.47 × 10–3)   

 +7.302 × 10–3 –1.210 × 10–3 –2.910 × 10–3 +2.800 × 10–4 0.00015 (0.00013) 

 (+7.68 × 10–3) (–1.28 × 10–3) (–3.08 × 10–3) (+3.2 × 10–4)  

 +1.091 × 10–3  –2.910 × 10–3 +2.800 × 10–4 0.00044 (0.00040) 

 (+1.15 × 10–3)  (–6 × 10–5) (–3.0 × 10–4)  
a Units: b01, kg·mol–1; b02 and b12, kg2·mol–2; b03 and b13, kg3·mol–3. RMSE(φ) and 
RMSE(f) (given in parentheses) denote the root-mean-square error in the osmotic 
coefficient and in Δf, respectively, resulting from the parameter conversion step only; 
their values do not include errors from the five-parameter source model. Each set of 
derived parameters is followed by the reported set [15] (given in parentheses) that was 
obtained by direct least-squares analysis of the experimental osmotic coefficients 
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b Source model parameters and RMSE(φ) from direct fit to experimental osmotic 
coefficients 
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Table 2 Parameters for Scatchard’s neutral-electrolyte model for NaCl + SrCl2 + H2O at 

298.15 K based on the five-parameter source model with I ≤ 11.2 mol·kg–1 [15] and 

various models with a reduced number of model parameters a 

b01 b02 b03 b12 b13 RMSE(φ) and 
RMSE(f) 

–1.458 × 10–2     0.01210 (0.01158) 

(+4.06 × 10–4)      

+3.536 × 10–2 –5.945 × 10–3    0.00814 (0.00779) 

(+1.780 × 10–2) (–2.938 × 10–3)     

+0.927 × 10–2 +1.82 × 10–3 –5.20 × 10–4   0.00723 (0.00692) 

(+1.331 × 10–2) (–1.074 × 10–3) (–1.62 × 10–4)    

+0.927 × 10–2 +1.82 × 10–3 –5.20 × 10–4 –1.830 × 10–3  0.00109 (0.00116) 

(+1.022 × 10–2) (+1.280 × 10–3) (–4.59 × 10–4) (–1.583 × 10–3)   

(+0.927 × 10–2) b (+1.82 × 10–3) b (–5.2 × 10–4) b (–9.9 × 10–4) b (–9.0 × 10–5) b 0.00147 b 

+3.536 × 10–2 –5.945 × 10–3  –1.830 × 10–3  0.00608 (0.00630) 

(+2.074 × 10–2) (–3.550 × 10–3)  (–9.12 × 10–4)   

–1.458 × 10–2   –1.830 × 10–3  0.01253 (0.01332) 

(+8.03 × 10–4)   (+5.38 × 10–4)   

 +4.303 × 10–3 –6.752 × 10–4   0.00600 (0.00575) 

 (+3.282 × 10–3) (–4.85 × 10–4)    

 +4.303 × 10–3 –6.752 × 10–4 –1.830 × 10–3  0.00070 (0.00065) 

 (+4.777 × 10–3) (–7.32 × 10–4) (–1.764 × 10–3)   
a Units: b01, kg·mol–1; b02 and b12, kg2·mol–2; b03 and b13, kg3·mol–3. RMSE(φ) and 

RMSE(f) (given in parentheses) denote the root-mean-square error in the osmotic 

coefficient and in Δf, respectively, resulting from the parameter conversion step only; 

their values do not include errors from the five-parameter source model. Each set of 

derived parameters is followed by the set (given in parentheses) that was obtained by 

direct least-squares analysis of the experimental osmotic coefficients. Most of these 

values were not given in the source paper and are taken from the original computer 

printout 
b Source model parameters and RMSE(φ) from direct fit to experimental osmotic 

coefficients 
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Table 3 Parameters for Scatchard’s neutral-electrolyte model for NaCl + MgCl2 + H2O at 

298.15 K based on the six-parameter source model with I ≤ 6.2 mol·kg–1 [16] and various 

models with a reduced number of model parameters a 

b01 b02 b03 b12 b13 b23 RMSE(φ) 
and 
RMSE(f) 

+2.960 × 10–2      0.00033 (0.00032) 

(+3.034 × 10–2)       

+3.971 × 10–2 –2.173 × 10–3     0.00041 (0.00040) 

(+4.292 × 10–2) (–2.724 × 10–3)      

+4.695 × 10–2 –6.067 × 10–3 +4.710 × 10–4    0.00038 (0.00037) 

(+4.844 × 10–2) (–5.807 × 10–3) (+3.80 × 10–4)     

+4.695 × 10–2 –6.067 × 10–3 +4.710 × 10–4 –1.407 × 10–3   0.00042 (0.00041) 

(+4.679 × 10–2) (–4.960 × 10–3) (+2.58 × 10–4) (–1.622 × 10–3)    

+4.695 × 10–2 –6.067 × 10–3 +4.710 × 10–4 –1.073 × 10–2 +1.804 × 10–3  0.00014 (0.00013) 

(+4.665 × 10–2) (–5.852 × 10–3) (+4.41 × 10–4) (–1.055 × 10–2) (+1.740 × 10–3)   

(+4.695 × 10–2)b (–6.067 × 10–3)b (+4.39 × 10–4)b (–1.073 × 10–2)b (+1.804 × 10–3)b (+2.24 × 10–4)b 0.00208 b 

 +5.832 × 10–3     0.00022 (0.00021) 

 (+5.933 × 10–3)      

+2.960 × 10–2   –1.407 × 10–3   0.00015 (0.00013) 

(+2.982 × 10–2)   (–1.518 × 10–3)    

+3.971 × 10–2 –2.173 × 10–3  –1.073 × 10–2 +1.804 × 10–3  0.00019 (0.00018) 

(+4.033 × 10–2) (–2.299 × 10–3)  (–1.029 × 10–2) (+1.682 × 10–3)   

+3.519 × 10–2  –2.452 × 10–4 –1.073 × 10–2 +1.804 × 10–3  0.00020 (0.00020) 

(+3.573 × 10–2)  (–2.63 × 10–4) (–1.031 × 10–2) (+1.684 × 10–3)   
a Units: b01, kg·mol–1; b02 and b12, kg2·mol–2; b03, b13, and b23, kg3·mol–3. RMSE(φ) and 

RMSE(f) (given in parentheses) denote the root-mean-square error in the osmotic 

coefficient and in Δf, respectively, resulting from the parameter conversion step only; 

their values do not include errors from the six-parameter source model. Each set of 

derived parameters is followed by the reported set [16] (given in parentheses) that was 

obtained by direct least-squares analysis of the experimental osmotic coefficients 
b Source model parameters and RMSE(φ) from direct fit to experimental osmotic 

coefficients 
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Table 4 Parameters for Scatchard’s neutral-electrolyte model for NaCl + MgCl2 + H2O at 

298.15 K based on the six-parameter source model with I ≤ 9.873 mol·kg–1 [16] and 

various models with a reduced number of model parameters a 

b01 b02 b03 b12 b13 b23 RMSE(φ) 
and 
RMSE(f) 

+2.713 × 10–2      0.00135 (0.00129) 

(+2.902 × 10–2)       

+3.299 × 10–2 –0.792 × 10–3     0.00053 (0.00050) 

(3.5768 × 10–2) (–1.110 × 10–3)      

+4.697 × 10–2 –5.512 × 10–3 +3.586 × 10–4    0.00200 (0.00191) 

(+5.021 × 10–2) (–6.856 × 10–3) (+5.14 × 10–4)     

+4.697 × 10–2 –5.512 × 10–3 +3.586 × 10–4 –1.257 × 10–4   0.00392 (0.00417) 

(+4.405 × 10–2) (–3.607 × 10–3) (+1.15 × 10–4) (–1.705 × 10–3)    

+4.697 × 10–2 –5.512 × 10–3 +3.586 × 10–4 –4.774 × 10–3 +5.650 × 10–4  0.00281 (0.00297) 

(+4.614 × 10–2) (–4.793 × 10–3) (+2.52 × 10–4) (–3.009 × 10–3) (+2.05 × 10–4)   

(+4.697 × 10–2)b (–5.512 × 10–3)b (+3.22 × 10–4)b (–4.774 × 10–3)b (+5.65 × 10–4)b (+2.56 × 10–4)b 0.00220 b 

 +3.385 × 10–3     0.00523 (0.00500) 

 (+4.346 × 10–3)      

+2.713 × 10–2   –1.257 × 10–4   0.00202 (0.00179) 

(+2.764 × 10–2)   (–1.018 × 10–3)    

+3.299 × 10–2 –0.792 × 10–3  –1.257 × 10–4   0.00431 (0.00462) 

(+4.107 × 10–2) (–2.380 × 10–3)  (–1.790 × 10–3)    

+3.299 × 10–2 –0.792 × 10–3  –4.774 × 10–3 +5.650 × 10–4  0.00432 (0.00468) 

(+4.074 × 10–2) (–2.319 × 10–3)  (–2.108 × 10–3) (+0.46 × 10–4)   

+3.446 × 10–2 –1.287 × 10–3  –1.257 × 10–4  +2.635 × 10–4 0.00382 (0.00425) 

(+4.183 × 10–2) (–2.601 × 10–3)  (–1.472 × 10–3)  (+1.23 × 10–4)  

+3.446 × 10–2 –1.287 × 10–3  –4.774 × 10–3 +5.650 × 10–4 +2.635 × 10–4 0.00240 (0.00260) 

(+4.013 × 10–2) (–2.352 × 10–3)  (–3.497 × 10–3) (+3.37 × 10–4) (+2.34 × 10–4)  

+2.997 × 10–2  –8.510 × 10–5 –4.774 × 10–3 +5.650 × 10–4 2.560 × 10–4 0.00369 (0.00400) 

(+3.426 × 10–2)  (–2.16 × 10–4) (–2.838 × 10–3) (+2.20 × 10–4) (+2.18 × 10–4)  

a Units: b01, kg·mol–1; b02 and b12, kg2·mol–2; b03, b13, and b23, kg3·mol–3. RMSE(φ) and 

RMSE(f) (given in parentheses) denote the root-mean-square error in the osmotic 

coefficient and in Δf, respectively, resulting from the parameter conversion step only; 

their values do not include errors from the six-parameter source model. Each set of 

derived parameters is followed by the reported set [16] (given in parentheses) that was 

obtained by direct least-squares analysis of the experimental osmotic coefficients 
b Source model parameters and RMSE(φ) from direct fit to experimental osmotic 

coefficients 
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Table 5 Parameters for Scatchard’s neutral-electrolyte model for MgCl2 + MgSO4 + H2O 

at 298.15 K based on the six-parameter source model with I ≤ 9.432 mol·kg–1 [12] and 

various models with a reduced number of model parameters a 

b01 b02 b03 b12 b13 b23 RMSE(φ) 
and 
RMSE(f) 

–4.400 × 10–2      0.00528 (0.00506) 

(–4.011 × 10–2)       

–2.717 × 10–2 –2.379 × 10–3     0.00443 (0.00425) 

(–3.354 × 10–2) (–1.145 × 10–3)      

–3.341 × 10–2  –1.983 × 10–4    0.00398 (0.00381) 

(–3.584 × 10–2)  (–1.128 × 10–4)     

 –1.037 × 10–2 +5.585 × 10–4    0.00410 (0.00392) 

 (–1.212 × 10–2) (+8.116 × 10–4)     

–4.561 × 10–2 +4.138 × 10–3 –5.182 × 10–4    0.00389 (0.00372) 

(–4.532 × 10–2) (+3.625 × 10–3) (–4.111 × 10–4)     

–2.717 × 10–2 –2.379 × 10–3  –1.229 × 10–3   0.00507 (0.00538) 

(–3.311 × 10–2) (–1.261 × 10–3)  (–1.428 × 10–4)    

(–4.561 × 10–2)b (+4.138 × 10–3)b (–4.953 × 10–4)b (–4.894 × 10–4)b (–9.412 × 10–5)b (–1.603 × 10–4)b 0.0015 b 

a Units: b01, kg·mol–1; b02 and b12, kg2·mol–2; b03, b13, and b23, kg3·mol–3. RMSE(φ) and 

RMSE(f) (given in parentheses) denote the root-mean-square error in the osmotic 

coefficient and in Δf, respectively, resulting from the parameter conversion step only; 

their values do not include errors from the six-parameter source model. Each set of 

derived parameters is followed by the reported set [12] (given in parentheses) that was 

obtained by direct least-squares analysis of the experimental osmotic coefficients 
b Source model parameters and RMSE(φ) from direct fit to experimental osmotic 

coefficients 
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Table 6 Ionic strengths for the highest molalities of the isopiestic experiments for the 

NaCl + SrCl2 + H2O, NaCl + MgCl2 + H2O, and MgCl2 + MgSO4 + H2O systems at 

298.15 K as a function of y1 a 

y1 NaCl + SrCl2 + H2O 

Imax/mol·kg–1 

NaCl + MgCl2 + H2O 

Imax/mol·kg–1 

MgCl2 + MgSO4 + H2O 

Imax/mol·kg–1 

0.1 12.4 10.5 10.8 

0.2 10.8 9.4 9.4 b 

0.3 9.6 8.5 8.4 

0.4 8.8 8.0 7.4 b 

0.5 8.2 7.6 6.7 

0.6 7.6 7.3 6.1 b 

0.7 7.2 7.0 5.6 

0.8 6.8 6.7 5.3 b 

0.9 6.5 6.4 4.9 
a These values of Imax were obtained by graphical smoothing of the ionic strengths for the 

highest molality isopiestic experiments [12, 15, 16]. Because of the rapid change of Imax 

with y1, the smoothed values are uncertain by ca. 0.2 mol·kg–1 
b These four values are reliable to the reported number of figures because the isopiestic 

experiments were performed at these ionic strength fractions 
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Table 7 Root mean square errors in the osmotic coefficient RMSE(∆φ) from converting 

the full parameter source models to models with fewer parameters for the NaCl + SrCl2 + 

H2O, NaCl + MgCl2 + H2O, and MgCl2 + MgSO4 + H2O systems at 298.15 K a 

Parameters System 1 
RMSE(∆φ) 

System 2 
RMSE(∆φ) 

System 3 
RMSE(∆φ) 

System 4 
RMSE(∆φ) 

System 5 
RMSE(∆φ) 

b01 0.00203 0.01142 0.00233 0.00308 0.00772 

b01, b02 0.00142 0.00550 0.00189 0.00277 0.00538 

b01, b02, b03 0.00123 0.00502 0.00188 0.00262 0.00466 

b01, b02, b03, b12 0.00020 0.00039 0.00137 0.00255  

b01, b02, b03, b12, b13 source source 0.00044 0.00201  

b01, b02, b03, b12, 

b13,b23 

  source source source 

b01, b12 0.00170 0.01058 0.00198 0.00303  

b01, b12, b13      

b01, b02, b12 0.00073 0.00229  0.00270 0.00349 

b01, b02, b12, b13 0.00068  0.00056 0.00228  

b01, b02, b12, b23    0.00185  

b01, b02, b12, b13, b23    0.00097  

b02 0.00260  0.00509 0.00681  

b02, b03 0.00126 0.00508   0.00775 

b02, b12, b13 0.00224 0.00075    

b01, b03     0.00497 

b01, b03, b12, b13   0.00070   

b01, b03, b12, b13, b23    0.00125  

b02, b03, b12 0.00031     

b02, b03, b12, b13 0.00023     
a System 1: NaCl + SrCl2 + H2O with I ≤ 6.16 mol·kg–1 and Table 1 converted 

parameters. System 2: NaCl + SrCl2 + H2O with I ≤ 11.2 mol·kg–1 and Table 2 converted 

parameters. System 3: NaCl + MgCl2 + H2O with I ≤ 6.2 mol·kg–1 and Table 3 converted 

parameters. System 4: NaCl + MgCl2 + H2O with I ≤ 9.873 mol·kg–1 and Table 4 

converted parameters. System 5: MgCl2 + MgSO4 + H2O with I ≤ 9.432 mol·kg–1 and 

Table 5 converted parameters
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Fig 1 Differences between values of the osmotic coefficients calculated with the {b01; 
Table 1} converted parameter set and the corresponding set obtained directly by least-
squares analysis of the experimental source data as a function of the ionic strength, at y1 = 

(0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), for NaCl + SrCl2 + H2O with Imax ≤ 6.16 

mol·kg–1
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Fig 2 Differences between values of the osmotic coefficients calculated with the {b01, b02, 
b03; Table 1} converted parameter set and the corresponding set obtained directly by 
least-squares analysis of the experimental source data as a function of the ionic strength, 

at y1 = (0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), for NaCl + SrCl2 + H2O with Imax ≤ 

6.16 mol·kg–1 
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Fig 3 Differences between values of the osmotic coefficients calculated with the {b01, b02, 
b03, b12; Table 1} converted parameter set and the corresponding set obtained directly by 
least-squares analysis of the experimental source data as a function of the ionic strength, 

at y1 = (0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), for NaCl + SrCl2 + H2O with Imax ≤ 

6.16 mol·kg–1 
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Fig 4 Differences between values of the osmotic coefficients calculated with the {b01; 
Table 3} converted parameter set and the corresponding set obtained directly by least-
squares analysis of the experimental source data as a function of the ionic strength, at y1 = 

(0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), for NaCl + MgCl2 + H2O with Imax ≤ 6.2 

mol·kg–1
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Fig 5 Differences between values of the osmotic coefficients calculated with the {b01, b02, 
b03; Table 3} converted parameter set and the corresponding set obtained directly by 
least-squares analysis of the experimental source data as a function of the ionic strength, 

at y1 = (0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), for NaCl + MgCl2 + H2O with Imax ≤ 

6.2 mol·kg–1 
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Fig 6 Differences between values of the osmotic coefficients calculated with the {b01, b02, 
b03, b12, b13; Table 3} converted parameter set and the corresponding set obtained directly 
by least-squares analysis of the experimental source data as a function of the ionic 

strength, at y1 = (0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), for NaCl + MgCl2 + H2O 

with Imax ≤ 6.2 mol·kg–1 
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Fig 7 Differences between values of the osmotic coefficients calculated with the {b01, b02, 
b03; Table 2} converted parameter set and the corresponding set obtained directly by 
least-squares analysis of the experimental source data as a function of the ionic strength, 

at y1 = (0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), for NaCl + SrCl2 + H2O with Imax ≤ 

11.2 mol·kg–1. The dashed curve represents the Imax values of Table 6 
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Fig 8 Differences between values of the osmotic coefficients calculated with the {b01, b02, 
b03; Table 4} converted parameter set and the corresponding set obtained directly by 
least-squares analysis of the experimental source data as a function of the ionic strength, 

at y1 = (0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), for NaCl + MgCl2 + H2O with Imax ≤ 

9.873 mol·kg–1. The dashed curve represents the Imax values of Table 6 
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Fig 9 Differences between values of the osmotic coefficients calculated with the {b01, b02, 
b03; Table 5} converted parameter set and the corresponding set obtained directly by 
least-squares analysis of the experimental source data as a function of the ionic strength, 

at y1 = (0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), for MgCl2 + MgSO4 + H2O with Imax 

≤ 9.432 mol·kg–1. The dashed curve represents the Imax values of Table 6 
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Appendix A Evaluation of the partial derivatives appearing in Eqs. 21a and 21b where 

Δf(φ) is defined by Eq. 18 
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Appendix B Evaluation of the matrix elements 

! 

B jk

lm  when the maximum ionic strength, 

Imax, does not depend on the ionic-strength fraction, y1 

 

First we evaluate the six diagonal matrix elements of Eq. 24, i.e., those with jk = lm, as 

defined by Eq. 26: 
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 The 30 other non-diagonal matrix elements are now given: 
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Appendix C Example for the matrices Bjk,lm and Ajk,lm, and the right-hand-side vector cjk 

for the specific case of the six-parameter source model and a truncated parameter set 

model that only has the four model parameters 

! 

b
01

t , 

! 

b
02

t , 

! 

b
12

t , and 

! 

b
23

t  

 

Here we give a specific example of the matrices and vector defined by Eq. 24. See 

Appendix B for the evaluation of the individual matrix elements. The Bjk,lm matrix for the 

six-parameter source model is given by 
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The Ajk,lm matrix for the four-parameter truncated parameter model is similarly given by 
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and the right-hand-side vector cjk by 
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! 
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